Self-catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon
نویسندگان
چکیده
The graphdiyne (GD), a carbon allotrope with a 2D structure comprising benzene rings and carbon-carbon triple bonds, can be synthesized through cross-coupling on the surface of copper foil. The key problem is in understanding the dependence of layers number and properties, however, the controlled growth of the layers numbers of GD film have not been demonstrated, its controlled growth into large-area and high ordered films with different numbers of layers is still an important challenge. Here, we show that a new strategy for synthesizing GD films with 2D nanostructures on ZnO nanorod arrays through a combination of reduction and a self-catalyzed vapor-liquid-solid growth process, using GD powder as the vapor source and ZnO nanorod arrays as the substrate. HRTEM shows the distance between pairs of streaks being approximately 0.365 nm by different thicknesses of GD films. The approach enables us to construct large-area ordered semiconductive films with high-quality surfaces showing high conductivity (up to 2800 S cm(-1)). FETs were fabricated based on the well ordered films; we prepared and measured over 100 devices. Devices incorporating these well-ordered and highly conductive GD films exhibited field-effect mobility as high as 100 cm(2) V(-1) s(-1).
منابع مشابه
MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces.
Two-dimensional (2D) layered materials exhibit high anisotropy in materials properties due to the large difference of intra- and interlayer bonding. This presents opportunities to engineer materials whose properties strongly depend on the orientation of the layers relative to the substrate. Here, using a similar growth process reported in our previous study of MoS2 and MoSe2 films whose layers ...
متن کاملPropagation and Interaction of Electrostatic and Electromagnetic Waves in Two Stream Free Electron Laser in the Presence of Self-Fields
A relativistic theory for two-stream free electron laser (FEL) with a one-dimensional helical wiggler and ion-channel guiding in the presence of self-fields are presented. A dispersion relation (DR) which includes coupling between the electromagnetic and the electrostatic waves is derived from a fluid model, with all of the relativistic terms related to the transverse wiggler motion. This DR is...
متن کاملHigh surface area carbon aerogels as porous substrates for direct growth of carbon nanotubes.
Novel carbon composites are fabricated through catalyzed CVD growth of carbon nanotubes directly on the inner surfaces of monolithic carbon aerogel (CA) substrates. Uniform CNT yield is obtained throughout the internal pore volume of CA monoliths with macroscopic dimensions. These composites possess large surface areas (>1000 m(2) g(-1)) and exhibit enhanced electrical conductivity following CN...
متن کاملSynthesis and Characterization of Carbon Nanotubes Catalyzed by TiO2 Supported Ni, Co and Ni-Co Nanoparticles via CCVD
Monometallic and bimetallic Ni and Co catalytic nanoparticles supported on Titanium dioxide (rutile phase) substrate were prepared by wet impregnation method. These nanoparicles were used as catalysts for synthesis of multiwalled carbon nanotubes (MWCNTs) from acetylene decomposition at 700°C by the catalytic chemical vapor deposition (CCVD) technique. The nanomaterials (catalyst and CNTs) were...
متن کاملSandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production.
Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015